This Week's Renewable Energy Promotion

In this email...

• Global Renewable Support Mechanisms Databook 2014

•Evolution and Economics of Solar PV Cells


Global Renewable Support Mechanisms Databook 2014

Summary

This databook provides an overview of all the renewable support mechanisms that are available globally. Each country maybe accessed via the Introduction tab.



This databook covers renewable support mechanisms for 114 countries and all 50 US states, providing detailed profiles for each country and state.



There are currently 114 countries globally with mechanisms available to promote renewables.



For the US, renewable support mechanisms profiles for each of the 50 states are broken down individually.



This databook contains 168 tabs.



In terms of renewable support mechanisms covered, the databook covers all of the key renewable promotion tools including:- Feed-in-Tariffs (FiT), Government subsidies and grants, Tax credits, Loans, Quota systems, tradable certificates, public investments, financing, and tax incentives.



Key Features

  • An overview of the renewable support mechanisms across 114 countries
  • Updated FiT rates and tax credit percentages
  • Precise and easy to navigate excel-based deliverable
  • Detailed overview of the 50 US states
  • Renewable targets/pledges of each country covered
  • Regional overviews
Key Benefits
  • What are the key renewable support mechanisms available?
  • Which country pays the highest FiT for renewables?
  • What are the individual renewable targets for all relevant countries globally?
  • Which country offers the best tax credits for renewables?
  • Which country is solar power friendly and which is a wind power supporting country?
More Info

Sample

Buy It Now

Evolution and Economics of Solar PV Cells

Summary

Chapter 1 Solar power, the solar resource and the growth of solar cells

Solar energy is the most abundant energy resource on the earth today, with the amount of energy reaching the surface equivalent to 7,500 times annual energy consumption. Solar cells are robust solid state devices that can operate under virtually all light conditions. Their output is greater the higher the light intensity available. Solar intensity varies globally, with the best regions generally close to the equator. Africa, south and southeast Asia, Australia, the southern states of the USA, and central and south America - all have good resources. However, even regions with lower average insolation, such as northern Europe or Japan - can exploit solar photovoltaic technology successfully. Solar cell capacity has grown rapidly in the second decade of the twenty-first century, reaching 137GW at the end of 2013.

Chapter 2 Solar cell technologies and technology trends

Solar cells rely on semiconductors to absorb light, and convert it into electricity. Each semiconductor is characterized by a bandwidth, and the optimum bandwidth for a solar collector is 1.4eV. The most popular material for solar cells is crystalline silicon, and the market is dominated by cells made from either single crystal or multicrystalline silicon (polycrystalline silicon) substrates. At its best silicon can achieve close to 25% energy conversion efficiency. Other materials, such as cadmium telluride or cadmium selenide are usually deployed in the form of thin films, which are conventionally considered cheaper to produce, although recent economic trends have contradicted this. Most solar devices are made from simple planar structures, designed to absorb light across their surface. An alternative approach is to use a very high efficiency, multilayer, solar cell and a solar concentrator. Concentrating solar converters have achieved nearly 45% efficiency in laboratory conditions. Organic solar cells are also being developed. These should also be cheap to produce if they can be perfected. While these new technologies are explored, conventional silicon cells have come to dominate the market with a share of 83%, and this dominance can be expected to continue over the short to medium term. Meanwhile, production is concentrated in China and Taiwan.



Chapter 3
The economics of solar cells

Solar cell costs have fallen rapidly over the past four to five years, and this has led to the technology becoming more competitive, in turn leading to cuts in subsidies for solar photovoltaic installations. With the cost and value of solar energy in flux, the US state of Minnesota has recently introduced a new, transparent approach to solar pricing that could for the benchmark for solar tariffs. The underlying capital cost of a solar PV installation depends in part on the type of installation - with small residential rooftop installations costing more than large utility installations. Costs also vary from country to country, with variations depending on a number of elements that are not intrinsically a part of the actual solar installation. In particular, the cost of rooftop installation in Germany is significantly lower than the same installation in the USA. It seems likely that installation costs are widely below US$3/W. The low cost of solar photovoltaic installations means that the cost of the electricity they produce has also fallen. For domestic rooftop installations, this cost is now below the cost of electricity from the grid in a number of important markets.



Chapter 4 Future market and economic prospects for solar cells



The market for solar cells has shifted away from Europe, the main driver for the past decade, towards Asia and the Asia Pacific region. However the market is also broadening and growth can be expected in many parts of the world - that have previously not shown a strong take up. This is being driven by the competitiveness of solar photovoltaic technology - which can now compete in some areas without any subsidies. This will come in spite of an expected stabilization of the cost of solar modules. On one prediction, the size of the solar market, globally, will reach 100GW by 2018. Over the longer term, estimates for the amount of electricity that might be supplied globally by solar cells varies between 0.6% and 4% by 2035. In Europe it already supplied 3% of total electricity demand. Important regional markets include China, Japan, the USA, Australia, and Mexico. The development of new financial vehicles that attract private sector investment for solar installations could help lower the cost of financing solar photovoltaic projects, potentially leading to further cost reductions.



Key Findings of Report

  • Analysis of solar PV power generation technology costs, concepts, drivers and components.
  • Assessment of electricity costs for different technologies in terms of the two fundamental yardsticks used for cost comparison, capital cost and the levelized cost of electricity.
  • Insight relating to the most innovative technologies and potential areas of opportunity for manufacturers.
  • Examination of the key solar PV power generation technologies costs.
  • Identification of the key trends shaping the market, as well as an evaluation of emerging trends that will drive innovation moving forward.

More Info

Sample

Buy It Now